Oligonucleotide tagging for copper-free click conjugation.

نویسندگان

  • Anup M Jawalekar
  • Sudip Malik
  • Jorge M M Verkade
  • Brian Gibson
  • Nancy S Barta
  • John C Hodges
  • Alan Rowan
  • Floris L van Delft
چکیده

Copper-free click chemistry between cyclooctynes and azide is a mild, fast and selective technology for conjugation of oligonucleotides. However, technology for site-specific introduction of the requisite probes by automated protocols is scarce, while the reported cyclooctynes are large and hydrophobic. In this work, it is demonstrated that the introduction of bicyclo[6.1.0]nonyne (BCN) into synthetic oligonucleotides is feasible by standard solid-phase phosphoramidite chemistry. A range of phosphoramidite building blocks is presented for incoporation of BCN or azide, either on-support or in solution. The usefulness of the approach is demonstrated by the straightforward and high-yielding conjugation of the resulting oligonucleotides, including biotinylation, fluorescent labeling, dimerization and attachment to polymer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast, copper-free click chemistry: a convenient solid-phase approach to oligonucleotide conjugation.

Solid-phase oligonucleotide conjugation by nitrile oxide-alkyne click cycloaddition chemistry has been successfully demonstrated; the reaction, compatible with all nucleobases, requires no metal catalyst and proceeds under physiological conditions.

متن کامل

An immobilized and reusable Cu(I) catalyst for metal ion-free conjugation of ligands to fully deprotected oligonucleotides through click reaction.

Chelation of Cu(I) ions to an immobilized hydrophilic tris(triazolylmethyl)amine chelator on a solid support allowed synthesis of RNA oligonucleotide conjugates from completely deprotected alkyne-oligonucleotides. No oligonucleotide strand degradation or metal ion contamination was observed. Furthermore, use of the immobilized copper(I) ion overcame regioselectivity issues associated with strai...

متن کامل

Assessment of the Full Compatibility of Copper(I)-Catalyzed Alkyne-Azide Cycloaddition and Oxime Click Reactions for bis-Labelling of Oligonucleotides

The conjugation of oligonucleotides with reporters is of great interest for improving their intrinsic properties or endowing new ones. In this context, we report herein a new procedure for the bis-labelling of oligonucleotides through oxime ligation (Click-O) and copper(I)-catalyzed alkyne-azide cycloaddition (Click-H). 5'-Azido and 3'-aldehyde precursors were incorporated into oligonucleotides...

متن کامل

Cu(I)-assisted click chemistry strategy for conjugation of non-protected cross-bridged macrocyclic chelators to tumour-targeting peptides.

Copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry has inherent challenges for copper-labeled radiopharmaceuticals. An azide-modified phosphonate-based cross-bridged macrocyclic chelator was synthesized for click chemistry conjugation with azide-modified Y3-TATE (a somatostatin analogue) on resin, without the need for protecting the chelator. The (64)Cu-labeled bioconjugate ...

متن کامل

Peptide conjugation via CuAAC 'click' chemistry.

The copper (I)-catalyzed alkyne azide 1,3-dipolar cycloaddition (CuAAC) or 'click' reaction, is a highly versatile reaction that can be performed under a variety of reaction conditions including various solvents, a wide pH and temperature range, and using different copper sources, with or without additional ligands or reducing agents. This reaction is highly selective and can be performed in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecules

دوره 18 7  شماره 

صفحات  -

تاریخ انتشار 2013